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Abstract. Absolute instabilities of planar semiconductor superlattices exhibiting negative
differential mobility (NDM) in vertical transport are investigated using the three-dimensional
hydrodynamic balance equations for arbitrary energy dispersion, with an accurate microscopic
treatment of phonon and impurity scatterings. In contrast with the prediction of the drift diffusion
model that in doped semiconductor superlattices absolute instability occurs closely following
the onset of NDM, the present analysis shows that a planar superlattice may become absolutely
unstable only when it is biased within a range deep in the NDM regime, and the enhancement
of the elastic scattering suppresses the occurrence of the absolute instability. This result is in
agreement with recent experimental findings, which cannot be explained within a drift diffusion
model.

1. Introduction

The experimental demonstration of the Esaki–Tsu [1] negative differential mobility (NDM)
and current instability in superlattice miniband transport [2–5] has brought a fascinating
prospect of and encouraged intensive studies on the realization of microwave oscillators
and other devices using wide-miniband semiconductor superlattices. As early as 1992,
Le Personet al [6] reported direct observation of time-dependent current oscillation up to
20 GHz, induced by picosecond light pulses in an undoped GaAs/AlAs superlattice biased in
the NDM regime and interpreted in terms of a propagating Gunn dipole domain formed by
light-excited electrons having a density of the order of 3×1016 cm−3. Recently, Grenzeret al
[7] and Hofbecket al [8] performed a series of experiments on silicon-doped GaAs/AlAs
wide-miniband superlattices having a free-carrier concentration of the order of 1017 cm−3

and detected high-frequency self-sustained current oscillation and microwave radiation at a
fundamental frequency of the order of 6 GHz from the superlattice over quite a large bias
voltage range above the critical value (at which the DC reaches a peak). They attributed the
current oscillation to propagating field domains related to the travelling space-charge-wave
instability in a biased superlattice in the NDM regime.

However, as pointed out by Gueret [9], according to the drift diffusion (DD) model, in
addition to the convective instability, an absolute instability may also occur in the NDM
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regime if

|ωc| > v2
0/4D (1)

wherev0 is the drift velocity at the bias fieldE0, D is the diffusion coefficient in the DD
equation and

ωc = (en0/ε0κ)µ0 (2)

is a frequency related to the differential mobilityµ0 = ∂v0/∂E0. When the absolute
instability sets in, this would tend to make the device switch to a static non-uniform field
distribution comprising a thin high-field layer on the anode side and a uniform low-field
region in the rest of the bulk, and to destroy the condition for the formation of travelling
electric-field domains [9], leading to the switch-over of the current–voltage characteristic
and the disappearance of the current oscillation.

For the superlattice systems examined by Le Personet al [6], Grenzeret al [7] and
Hofbecket al [8] having a carrier density of the order of 1017 cm−3, the DD model indicates
(see the following text) that the systems become absolutely unstable very soon after the
occurrence of the NDM. This DD-model prediction is in contradiction with the above-
mentioned experimental observation that the current oscillation and microwave radiation
are detected over quite a large bias-voltage range in the NDM regime. To gain physical
insight into this problem it is desirable to pursue further analyses of the absolute instability
in superlattice miniband transport beyond the DD model.

The purpose of this paper is to carry out a careful examination on the absolute instability
in a doped semiconductor superlattice, using the non-parabolic balance-equation method
[10, 11] extended to spatially non-uniform systems [10, 12]. This method, which is fully
three dimensional in nature and takes microscopic scattering mechanisms into account, not
only is much more sophisticated than the DD model but also should be more accurate
than the previous one-dimensional calculations [13, 14], especially for systems with a high
carrier density. We find that, in contrast with the DD-model prediction, the balance-equation
analysis shows that a doped planar superlattice may become absolutely unstable only when
it is biased within a finite range deep in the NDM regime, and the enhancement of the elastic
scattering suppresses the occurrence of the absolute instability. This result is in agreement
with recent experimental findings which cannot be explained by the DD model.

2. Hydrodynamic balance equations for superlattices

In the non-parabolic hydrodynamic balance-equation method [10] the transport state of a
system consisting of many electrons moving in an arbitrary energy band, which are subject
to an applied electric field and scattered by impurities and by phonons, is described by
the shifted lattice momentumpd , the electron temperatureTe, and the chemical potential
µ (or the ratio of the chemical potential to the electron temperature,ζ ≡ µ/Te). These
fundamental variables are treated as time and space dependent and all the other quantities
are functions of these fundamental variables. Requiring balances of the carrier number
density, the acceleration and the energy in a small volume element about a spatial position,
we obtain the the hydrodynamic balance equations as given in [10].

Consider a planar superlattice in which electrons move freely in the transverse (x–y)
plane and can travel along the growth axis (z direction) through the (lowest) miniband
formed by the periodic potential wells and barriers of finite height. The electron energy
dispersion consists of a transverse energyεk‖ = k2

‖/2m (m being the band mass of the
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carrier in the bulk semiconductor), and a tight-binding miniband energyε(kz) related to the
longitudinal motion:

ε(k) = εk‖ + ε(kz) (3)

with

ε(kz) = (1/2)[1− cos(kzd)] (4)

Here,k = (k‖, kz) wherek‖ = (kx, ky) andkz are the in-plane and longitudinal wavevectors
(−∞ < kx, ky < ∞, and−π/d < kz 6 π/d, d being the superlattice period along the
z-direction) and1 is the miniband width.

When an electric fieldE is applied along the superlattice growth axis, the carrier drift
motion, the frictional acceleration and the spatial inhomogeneity are all in thez direction.
The hydrodynamic balance equations take the form

∂n

∂t
= − ∂

∂z
(nvd) (5)

∂

∂t
(nvd) = − ∂

∂z
(nBz)+ neE

m∗z
+ nA (6)

∂

∂t
(nε) = − ∂

∂z
(nSz)+ neEvd − nW. (7)

Here, the carrier densityn, the drift velocity vd , the average per-carrier energyε, the
zz component 1/m∗z , of the inverse effective-mass tensor, thezz componentBz of the
average velocity–velocity dyadic, thez componentSz of the energy flux vector, the frictional
accelerationA due to impurity and phonon scatterings and the carrier energy-loss rateW

to the lattice system are all functions ofzd ≡ pdd, Te andζ . Their expressions were given
in [10]. The Poisson equation is written as

∂E

∂z
= e

ε0κ
(n− n0) (8)

whereκ is the dielectric constant of the bulk material andn0 is the background density of
positive charge which is assumed to be uniformly distributed over the whole superlattice.

3. Dispersion relation for small wave-like fluctuations

To investigate the occurrence of instability in the biased condition in superlattice miniband
transport, we consider a small wave-like fluctuation superimposed on a DC bias quantity,
writing zd , Te, ζ , E and any other physical quantityQ involved in equations (5)–(8) as the
sum of the DC bias part and a small fluctuation:zd = z0+ δzd , Te = T0+ δTe, ζ = ζ0+ δζ ,
E = E0 + δE andQ = Q0 + δQ (Q stands forvd , n, 1/m∗z , Bz, Sz or ε), with δzd , δTe,
δζ , δE andδQ ∼ exp[i(kz − ωt)].

The equations for the bias DC quantities are just those for DC steady-state transport in
the spatially homogeneous case and were discussed in detail in [11]. The main result is
that v0 as a function ofE0 exhibits NDM; after reaching its peak valuevp at E0 = Ec, v0

decreases with increasingE0.
For linear order of small fluctuations the equations can be written in terms ofδzd , δTe,

δζ andδE. The Poisson equation (8) and the continuity equation (5) become

en0

ε0κ
(α0t δTe + α0ζ δζ )− ik δE = 0 (9)
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and

(kvmα10 cosz0) δzd + (kvmα1t sinz0− ωα0t ) δTe + (kvmα1ζ sinz0− ωα0ζ ) δζ = 0. (10)

Equations (6) and (7) are

c31 δzd + c32 δTe + c33 δζ + c34 δE/E0 = 0 (11)

c41 δzd + c42 δTe + c43 δζ + c44 δE/E0 = 0. (12)

Here,c3j andc4j (j = 1, 2, 3), which depend on the DC bias and scattering, are functions
of k andω:

c31 ≡ − 1

vm

∂A0

∂zd
+ ωBα10 sinz0+ ikvmα20 sin(2z0)− iωα10 cosz0

c32 ≡ − 1

vm

∂A0

∂Te
− ωBα1t cosz0+ ikvm 1

2[α0t − α2t cos(2z0)] − iωα1t sinz0

c33 ≡ − 1

vm

∂A0

∂ζ
− ωBα1ζ cosz0+ ikvm 1

2[α0ζ − α2ζ cos(2z0)] − iωα1ζ sinz0

c34 ≡ −ωBα10 cosz0

and

c41 ≡ 2

1

∂W0

∂zd
− ωBα10 cosz0+ ikvm[α10 cosz0− α20 cos(2z0)+ β10 cosz0] − iωα10 sinz0

c42 ≡ 2

1

∂W0

∂Te
− ωBα1t sinz0+ ikvm

(
α1t sinz0− α2t

2
sin(2z0)+ β1t sinz0

)
+iω(α1t cosz0− α0t − β0t )

c43 ≡ 2

1

∂W0

∂ζ
− ωBα1ζ sinz0+ ikvm

(
α1ζ sinz0− α2ζ

2
sin(2z0)+ β1ζ sinz0

)
+iω(α1ζ cosz0− α0ζ − β0ζ )

c44 ≡ −ωBα10 sinz0.

In these equations,ωB = edE0 is the Bloch frequency at the bias fieldE0, αi0 ≡ αi(T0, ζ0)

(i = 1, 2), βi0 ≡ βi(T0, ζ0) (i = 0, 1), αit ≡ ∂αi(T0, ζ0)/∂Te (i = 0, 1, 2), αiζ ≡
∂αi(T0, ζ0)/∂ζ (i = 0, 1, 2), βit ≡ ∂βi(T0, ζ0)/∂Te (i = 0, 1), andβiζ ≡ ∂βi(T0, ζ0)/∂ζ

(i = 0, 1). The functionsαi(T0, ζ0) (i = 0, 1, 2) andβi(T0, ζ0) (i = 0, 1) were defined in
[12].

Equations (9)–(12) constitute a set of four linear algebraic equations for four variables
δzd , δTe, δζ and δE. The condition for it to have non-zero solution requires that the
determinant of its coefficients vanishes:

D(k, ω) = 0. (13)

Equation (13) is the dispersion equation which has been used to analyse travelling space-
charge-wave modes in GaAs-based superlattices [12]. It was found that superlattice systems
exhibit convective instability when it is biased in the NDM regime. Although the predicted
phase velocity and amplitude growth rate of the convective space-charge waves differ greatly
from the previous understanding of the DD model, the observation that amplitude-growing
travelling space-charge waves occur as long asE0 > Ec, is in agreement with the DD
model.
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4. Absolute instability

Generally, the dispersion equation (13) maps a point of the complex frequency (ω) plane
onto a point or several points of the complex wavevector (k) plane. The possible absolute
instability of an infinite superlattice system may be analysed by the behaviour of such a
mapping [9]. It is known that an absolute instability occurs if there is a value ofω having
a positive imaginary part, at which two roots of the dispersion equation, which correspond
to waves travelling in different directions, coincide [15].

As an example we perform a systematic analysis at lattice temperatureT = 300 K
for a GaAs-based superlattice with periodd = 4.8 nm, miniband width1 = 660 K and
carrier sheet densityNs = 0.48× 1015 m−2. The carrier bulk density of this system is
n = Ns/d = 1.0×1017 cm−3. We consider electron scattering by acoustic and polar optical
phonons having bulk-like modes of GaAs, as well as the elastic scattering due to charged
impurities. The strength of the latter is assumed so that the low-temperature linear DC
mobility of the system isµ0 = 2.0 m2 V−1 s−1. The DC steady-state drift velocityv0 as
a function of the electric fieldE0 obtained from the zero-order balance equations exhibits
behaviour typical of negative differential conductance when the bias electric fieldE0 is
larger than the threshold fieldEc ' 5.6 kV cm−1.

Figure 1 demonstrates a mapping determined from the dispersion equation (13) by
showing several lines (labelled 1, 2 and 3 respectively) of theω plane mapped onto thek
plane in the case of DC biasE0 = 8.0 kV cm−1. Line 1 (ω1/2π = 50 GHz) of theω plane
is mapped into two curves in thek plane labelled 1; line 2 (ω1/2π = −50 GHz) of theω
plane is mapped into curves labelled 2 in thek plane. Whenω moves downwards along the
imaginary axis (line 3) of theω plane towards the pointω = iωb (ωb/2π = −25.7 GHz),
the two drift relaxation solutions in thek plane move along the imaginary axis, from positive
and negative sides, respectively, towards the positionk = ikb (kbd = −0.156). Whenω, in
its descent along the imaginary axis, passes through iωb, the corresponding drift relaxation
solutions start from ikb and go almost horizontally in opposite directions. Therefore, the
positionω1 = 0, ω2 = ωb andk1 = 0, k2 = kb is apparently a double root of equation (13).
This double root corresponds to an absolute instability ifωb is positive [9]. Although for
the case shown in figure 1 (E0 = 8.0 kV cm−1) ωb is negative, it value increases with
increasing strength of the bias electric field and becomes positive fromE0 = 9.2 kV cm−1

toE0 = 14.1 kV cm−1. In this bias range the space–time dependence of the system response
is essentially proportional to

exp(ωbt − kbz)
indicating temporal growth without spatial propagation. The calculatedωb- and kb-values
of the double root for different bias electric fields are shown in figure 2. Despite the
fact that, when the bias electric fieldE0 enters the NDM regime (µ0 < 0), the system
immediately exhibits convective instability, this superlattice becomes absolutely unstable
only when the bias fieldE0 exceeds 9.2 kV cm−1, in favour of temporal growth of the
local domain. The domain size can be estimated from the value ofkb to be several spatial
periods of the superlattice. Thus, for a realistic superlattice having more than several tens
of spatial periods, the condition for the onset and formation of such local domains should
not be seriously affected by the boundary conditions. When an absolute instability sets in,
any anode-type non-uniformity can nucleate a local growing high-field domain and thus
would tend to make the device switch to a non-uniform field distribution comprising a thin
stationary high-field layer on the anode side and a uniform low-field region in the rest of
the bulk [9].
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Figure 1. Mapping of theω plane onto thek plane for a GaAs-based superlattice having a period
d = 4.8 nm, a miniband width1 = 660 K, a carrier sheet densityNs = 0.48× 1015 m−2 and
a low-temperature linear DC mobilityµ0 = 2.0 m2 V−1 s−1 at a bias fieldE0 = 8.0 kV cm−1.
The lattice temperature isT = 300 K. Each line (labelled 1, 2 and 3) in theω plane is
mapped into two curves in thek plane. The double root atk1 = 0, k2 = kb (kbd = −0.156)
corresponds toω1 = 0, ω2 = iωb. For the bias case illustrated here (E0 = 8.0 kV cm−1 and
ωb/2π = −25.7 GHz) there is no absolute instability.

Such a condition for the occurrence of absolute instability in a doped semiconductor
superlattice is quite different from the condition (1) set by the conventional DD model.
For the superlattice specified above, the diffusion coefficient can be estimated from
D = 12d2τ/8 with the momentum relaxation timeτ ' 0.12 ps [16]. Sincev0 is always
less than the peak drift velocityvp ' 53.9 km s−1, we havev2

0/4D < 2.8× 1011 s−1.
ωc can be obtained from thev0 versusE0 (see figure 2). It is seen that, for this system,
the condition (1) is satisfied within a very large range of bias fieldsE0 from 5.8 to about
100 kV cm−1. Therefore, according to the criterion (1) of the DD model, this superlattice
will be absolutely unstable almost immediately following the occurrence of the NDM.

5. Comparison with experiments

Recently, Grenzeret al [7] and Hofbecket al [8] detected high-frequency self-sustained
current oscillations and microwave radiation in several silicon-doped GaAs/AlAs wide-
miniband superlattices having a free-carrier concentration of the order of 1017 cm−3 and
attributed the current oscillation to propagating field domains related to the travelling
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Figure 2. Values ofωb andkbd of the double root shown as functions of the bias fieldE0 for
the same GaAs-based superlattice as described in figure 1 at a lattice temperatureT = 300 K.
The drift velocityv0 is also shown here (shaded curve).

space-charge-wave instability. One of their systems examined consists of 120 periods,
each having 13 monolayers (3.68 nm) of GaAs and four monolayers (1.12 nm) of AlAs.
Using the Kronig–Penny model we estimate that the width of the lowest miniband is about
1 ' 57 meV (660 K). This essentially has the same miniband structure as the sample
superlattice that we discussed in the preceding section except that the electrons should
suffer stronger elastic scattering (owing to impurities, surface roughness, etc). To mimic
the experimental system with a threshold fieldEc ' 10 kV cm−1, we assume that the low-
temperature linear DC mobilityµ0 = 0.1 m2 V−1 s−1. This yields the curve ofv0 versus
E0 (obtained from the zero-order balance equations) shown in figure 3, having a threshold
field Ec ' 10.2 kV cm−1. From this curve ofv0 versusE0 and using the method illustrated
in the preceding section to estimate, we find that the criterion (1) will be satisfied when the
bias fieldE0 > 10.5 kV cm−1 up toE0 = 65 kV cm−1.

We can also make an estimation from the simplified balance-equation model [16]. Based
on this simplified model the condition (1) can be written approximately as

E0

Ec
− 1> 2α(T )

ε0κE
2
c

n01
(14)

where α(T ) is a function depending on1/T and roughly of the order of 0.4 for
1 = 57 meV at room temperature. Therefore, for the above-mentioned GaAs-based
superlattices used in the experiments, condition (1) would be satisfied ifE0/Ec−1> 0.04,
or E0 > 10.6 kV cm−1.

This means that, according to criterion (1), the DD model still predicts the system
to become absolutely unstable very soon after it enters the NDM regime or when the
bias voltage goes aboveUc. The onset of the absolute instability would switch the
superlattice from the propagating field-domain state to the spatially stationary non-uniform
field distribution state, having essentially no current oscillation in the system. The
observation of the current oscillations indicates that such a prediction is not correct, and



4860 X L Lei and H L Cui

Figure 3. Values ofωb and kbd of the double root, shown as functions of the bias fieldE0

at a lattice temperatureT = 300 K for the GaAs-based superlattice with the same miniband
structure and carrier density as described in figure 1 but having a low-temperature linear DC
mobility µ0 = 0.1 m2 V−1 s−1. The drift velocityv0 is shown (shaded curve).

the absolute instability does not occur at least over a substantial part of the NDM regime
in this system.

To compare the present balance-equation model with experiments, we have repeated
the mapping analysis as outlined in the preceding section for the GaAs-based superlattice
with exactly the same miniband structure and carrier density as described in figures 1 and
2, but having stronger elastic scattering as outlined above (with low-temperature linear DC
mobility µ0 = 0.1 m2 V−1 s−1 and threshold fieldEc = 10.2 kV cm−1). The calculated
ωb- and kb-values of the double root as functions of the bias electric field are shown in
figure 3. We see thatωb is always negative, i.e. the absolute instability does not occur
in this system. Such a result confirms that within the whole NDM regime this superlattice
favours a propagating field-domain state, in agreement with the experimental observation.

6. Conclusion

We have investigated the possible absolute instability in doped wide-miniband GaAs-based
planar superlattices at room temperature, using the three-dimensional hydrodynamic balance
equations recently developed for an arbitrary energy band. We considered carriers scattered
by both the acoustic and the polar optical phonons in GaAs as well as by impurities (to
mimic the elastic scattering). In contrast with the prediction of the DD model that in
doped semiconductor superlattices absolute instability occurs closely following the onset
of NDM, we find that, although a planar superlattice with weak elastic scattering may
become absolutely unstable when it is biased within a range deep in the NDM regime,
the enhancement of the elastic scattering would completely suppress the occurrence of the
absolute instability. This result is in agreement with recent experimental findings, which
cannot be explained within a DD model.
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